Suppose we want to simulate for
,
. Suppose we want to do the same for the Cauchy distribution.
In other words, we want to draw several random variables from a normal distribution and then take the average. As increases we should get closer to the mean of the distribution we’re drawing from, 0 in this case.
The R code below will do this. It produces this graph:

Notice that while the Normal distribution converges quickly the Cauchy never does. This is because the Cauchy distribution has fat tails and so extreme observations are common.
################################################################ # R Simulation # James McCammon # 2/20/2017 ################################################################ # This script goes through the simulation of plotting both normal # and Cauchy means for random vectors of size 1 to 10,000. It # also demonstrates function creation and plotting. # Highlight desired section and click "Run." # Set working directory as needed setwd("~/R Projects/All of Statistics") ### # Calculate means and plot using base R ### # Set seed for reproducibility set.seed(271) # # Version 1: Simple # n = seq(from=1, to=10000, by=1) y=sapply(n, FUN=function(x) sum(rnorm(x))/x) plot(n, y, type="l") # # Version 2: Define a function # sim = function(x, FUN) { sapply(x, FUN=function(x) sum(FUN(x))/x) } # Use function to plot normal means x = seq(from=1, to=10000, by=1) y1 = sim(x, rnorm) plot(x, y1, type="l") # Use function to plot Cauchy means y2 = sim(x, rcauchy) plot(x, y2, type="l") # # Version 3: More complex function # # This function has: # (1) error checking # (2) extra argument options # (3) the ability to input any distribution R supports sim = function(x, FUN, ...) { if(!is.character(FUN)) stop('Please enter distribution as string.') dists = c('rnorm', 'rbeta', 'rbinom', 'rcauchy', 'rchisq', 'rexp', 'rf', 'rgamma', 'rgeom', 'rhyper', 'rlnorm', 'rmultinom', 'rnbinom', 'rpois', 'rt', 'runif', 'rweibull') if(is.na(match(FUN, dists))) stop(paste('Please enter a valid distribution from one of:', paste(dists, collapse=', '))) FUN = get(FUN) sapply(x, FUN=function(x) sum(FUN(x, ...))/x) } # We have to define our function in string form. # This will throw error 1. test1 = sim(x, rnorm) # We have to input a distribution R supports. # This will throw error 2. test2 = sim(x, 'my_cool_function') # We can input additional arguments like the # mean, standard deviations, or other shape parameters. test3 = sim(x, 'rnorm', mean=10, sd=2) #### # Using ggplot2 to make pretty graph ### # Load libraries library(ggplot2) library(ggthemes) library(gridExtra) png(filename='Ch3-Pr9.png', width=1200, height=600) df1 = cbind.data.frame(x, y1) p1 = ggplot(df1, aes(x=x, y=y1)) + geom_line(size = 1, color='#937EBF') + theme_fivethirtyeight() + ggtitle("Normal Means") df2 = cbind.data.frame(x, y2) p2 = ggplot(df2, aes(x=x, y=y2)) + geom_line(size = 1, color='#EF4664') + theme_fivethirtyeight() + ggtitle("Cauchy Means") # Save charts grid.arrange(p1,p2,nrow=2,ncol=1) dev.off() # Print charts to screen grid.arrange(p1,p2,nrow=2,ncol=1)